Hand shape classification using depth data for unconstrained 3D interaction
نویسنده
چکیده
In this paper, we introduce a novel method for view-independent hand pose recognition from depth data. The proposed approach, which does not rely on color information, provides an estimation of the shape and orientation of the user’s hand without constraining him/her to maintain a fixed position in the 3D space. We use principal component analysis to estimate the hand orientation in space, Flusser moment invariants as image features and two SVM-RBF classifiers for visual recognition. Moreover, we describe a novel weighting method that takes advantage of the orientation and velocity of the user’s hand to assign a score to each hand shape hypothesis. The complete processing chain is described and evaluated in terms of real-time performance and classification accuracy. As a case study, it has also been integrated into a touchless interface for 3D medical visualization, which allows users to manipulate 3D anatomical parts with up to six degrees of freedom. Furthermore, the paper discusses the results of a user study aimed at assessing if using hand velocity as an indicator of the user’s intentionality in changing hand posture results in an overall gain in the classification accuracy. The experimental results show that, especially in the presence of out-of-plane rotations of the hand, the introduction of the velocity-based weighting method produces a significant increase in the pose recognition accuracy.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملReal time Hand Gesture Recognition using a Range Camera
This paper proposes a real time hand gesture recognition system. The approach uses a range camera to capture the depth data. After some preprocessing procedures, the depth data is used to segment the hand and then locate the hand in 3D space. The hand shape is classified into known categories using a chamfer matching method to measure the similarities between the candidate hand image and the ha...
متن کامل3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملMarkerless 3D Interaction in an Unconstrained Handheld Mixed Reality Setup
In mobile applications, it is crucial to provide intuitive means for 2D and 3D interaction. A large number of techniques exist to support a natural user interface (NUI) by detecting the user’s hand posture in RGB+D (depth) data. Depending on the given interaction scenario and its environmental properties, each technique has its advantages and disadvantages regarding accuracy and the robustness ...
متن کامل3D Hand Pose Estimation: From Current Achievements to Future Goals
In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-ofthe-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JAISE
دوره 6 شماره
صفحات -
تاریخ انتشار 2014